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Abstract
We discuss how to extract information about the cosmological constant from the
Wheeler–DeWitt equation, considered as an eigenvalue of a Sturm–Liouville
problem. A generalization to a f (R) theory is taken under examination. The
equation is approximated to one loop with the help of a variational approach
with Gaussian trial wave functionals. We use a zeta function regularization to
handle with divergences. A renormalization procedure is introduced to remove
the infinities together with a renormalization group equation.

PACS numbers: 04.60.−m, 98.80.Qc

1. Introduction

Einstein’s field equations represent a fundamental set of information regarding the laws of
spacetime. They are represented by

Rµν − 1
2gµνR + �cgµν = κTµν, (1)

where Tµν is the energy–momentum tensor of some matter fields, κ = 8πG with G as
Newton’s constant and �c is the cosmological constant. The sourceless version of equation (1)
is simply

Rµν − 1
2gµνR + �cgµν = 0. (2)

It is well known that there exists a huge discrepancy between the observed [1] and the computed
value of the cosmological constant. It amounts approximately to a factor of 120 orders of
magnitude: this is the cosmological constant problem. One possible approach to such a
problem is given by the Wheeler–DeWitt (WDW) equation [2]. The WDW equation can be
extracted from Einstein’s field equations with and without matter fields in a very simple way.
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If we introduce a time-like unit vector uµ such that u·u = −1, then after a little rearrangement,
we get1

H = (2κ)Gijklπ
ijπkl −

√
g

2κ
(3R − 2�c) = 0. (3)

3R is the scalar curvature in three dimensions. This is the time–time component of equation (2).
It represents a constraint at the classical level and the invariance under time reparametrization.
Its quantum counterpart

H� = 0 (4)

is the WDW equation. If we integrate over the hypersurface � and we define

�̂� = (2κ)Gijklπ
ijπkl −

√
g

2κ

3R, (5)

equation (4) can be cast in the following form:∫
D[gij ]�∗[gij ]

[∫
�

d3x�̂�

]
�[gij ] = −�c

κ
V

∫
D[gij ]�∗[gij ]�[gij ], (6)

where we have multiplied equation (4) by �∗[gij ], we have functionally integrated over the
three spatial metric gij and where we have defined the volume of the hypersurface � as
V = ∫

�
d3x

√
g. Thus one can formally re-write the WDW equation as

1

V

∫
D[gij ]�∗[gij ]

∫
�

d3x�̂��[gij ]∫
D[gij ]�∗[gij ]�[gij ]

= 1

V

〈�| ∫
�

d3x�̂�|�〉
〈�|�〉 = −�c

κ
. (7)

We can gain more information considering a separation of the spatial part of the metric into a
background term, ḡij , and a quantum fluctuation, hij ,

gij = ḡij + hij . (8)

Thus equation (7) becomes

1

V

〈�| ∫
�

d3x
[
�̂

(0)
� + �̂

(1)
� + �̂

(2)
� + . . .

]|�〉
〈�|�〉 = −�c

κ
�[gij ], (9)

where �̂
(i)
� represents the ith order of perturbation in hij . By observing that the kinetic part of

�̂� is quadratic in the momenta, we only need to expand the three-scalar curvature
∫

d3x
√

g3R

up to the quadratic order and we get∫
�

d3x
√

ḡ

[
−1

4
h�h +

1

4
hli�hli − 1

2
hij∇l∇ih

l
j

+
1

2
h∇l∇ih

li − 1

2
hijRiah

a
j +

1

2
hRijh

ij +
1

4
h(R(0))h

]
(10)

where h is the trace of hij and R(0) is the three-dimensional scalar curvature on-shell.
Equation (7) represents the Sturm–Liouville problem associated with the cosmological
constant. The related boundary conditions are dictated by the choice of the trial
wavefunctionals which, in our case, are of the Gaussian type. Different types of
wavefunctionals correspond to different boundary conditions. Extracting the TT tensor
contribution from equation (7) approximated to second order in perturbation of the spatial
part of the metric into a background term, ḡij , and a perturbation, hij , we get

�̂⊥
� = 1

4V

∫
�

d3x
√

ḡGijkl

[
(2κ)K−1⊥(x, x)ijkl +

1

(2κ)
(�2)

a
jK

⊥(x, x)iakl

]
, (11)

1 See [3] for more details.
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where Gijkl represents the inverse DeWitt metric and all indices run from one to three. The
propagator K⊥(x, x)iakl can be represented as

K⊥(−→x ,−→y )iakl :=
∑

τ

h
(τ)⊥
ia (−→x )h

(τ)⊥
kl (−→y )

2λ(τ)
, (12)

where h
(τ)⊥
ia (−→x ) are the eigenfunctions of �2, whose explicit expression for the massive

case will be shown in the following section. τ denotes a complete set of indices and λ(τ)

are a set of variational parameters to be determined by the minimization of equation (11).
The expectation value of �̂⊥

� is easily obtained by inserting the form of the propagator into
equation (11) and minimizing with respect to the variational function λ(τ). Thus the total
one-loop energy density for TT tensors becomes

�

8πG
= −1

4

∑
τ

[√
ω2

1(τ ) +
√

ω2
2(τ )

]
. (13)

The above expression makes sense only for ω2
i (τ ) > 0, where ωi are the eigenvalues of �2.

2. One loop energy regularization and renormalization for a f (R) = R theory

The spin-2 operator for the Schwarzschild metric in the Regge and Wheeler representation
[4], leads to the following system of equations (r ≡ r(x)):⎧⎪⎪⎪⎨

⎪⎪⎪⎩

[
− d2

dx2
+

l(l + 1)

r2
+ m2

1(r)

]
f1(x) = ω2

1,lf1(x)

[
− d2

dx2
+

l(l + 1)

r2
+ m2

2(r)

]
f2(x) = ω2

2,lf2(x),

(14)

where reduced fields have been used and the proper geodesic distance from the throat of the
bridge has been considered. Close to the throat, the effective masses are{

m2
1(r) 
 −m2

0(M)

m2
2(r) 
 m2

0(M),
(15)

where we have defined a parameter r0 > 2MG and m2
0(M) = 3MG

/
r3

0 . The main reason for
introducing a new parameter resides in the fluctuation of the horizon that forbids any kind of
approach. It is now possible to explicitly evaluate equation (13) in terms of the effective mass.
To further proceed we use the WKB method used by ‘t Hooft in the brick wall problem [5]
and we count the number of modes with frequency less than ωi, i = 1, 2. Thus the one-loop
total energy for TT tensors becomes

�

8πG
= ρ1 + ρ2 = − 1

16π2

2∑
i=1

∫ +∞
√

m2
i (r)

ω2
i

√
ω2

i − m2
i (r) dωi, (16)

where we have included an additional 4π coming from the angular integration. Here, we
use the zeta function regularization method to compute the energy densities ρ1 and ρ2. Note
that this procedure is completely equivalent to the subtraction procedure of the Casimir
energy computation where the zero point energy (ZPE) in different backgrounds with the
same asymptotic properties is involved. To this purpose, we introduce the additional mass
parameter µ in order to restore the correct dimension for the regularized quantities. Such an
arbitrary mass scale emerges unavoidably in any regularization scheme. One gets

ρi(ε) = m4
i (r)

256π2

[
1

ε
+ ln

(
µ2

m2
i (r)

)
+ 2 ln 2 − 1

2

]
, (17)
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i = 1, 2. The renormalization is performed via the absorption of the divergent part into the
re-definition of the bare classical constant �

� → �0 + �div. (18)

The remaining finite value for the cosmological constant reads

�0

8πG
= 1

256π2

{
m4

1(r)

[
ln

(
µ2∣∣m2
1(r)

∣∣
)

+ 2 ln 2 − 1

2

]

+ m4
2(r)

[
ln

(
µ2

m2
2(r)

)
+ 2 ln 2 − 1

2

]}
= (ρ1(µ) + ρ2(µ)) = ρTT

eff (µ, r). (19)

The quantity in equation (19) depends on the arbitrary mass scale µ. It is appropriate
to use the renormalization group equation to eliminate such a dependence. To this end, we
impose that [6]

1

8πG
µ

∂�TT
0 (µ)

∂µ
= µ

d

dµ
ρTT

eff (µ, r). (20)

Solving it we find that the renormalized constant �0 should be treated as a running one in the
sense that it varies provided that the scale µ is changing

�0(µ, r) = �0(µ0, r) +
G

16π

(
m4

1 (r) + m4
2(r)

)
ln

µ

µ0
. (21)

Substituting equation (21) into equation (19) we find

�0(µ0,M)

8πG
= − 1

128π2

{
m4

0(M)

[
ln

(
m2

0 (M)

4µ2
0

)
+

1

2

]}
. (22)

Equation (22) has a maximum when2

1

e
= m2

0(M)

4µ2
0

�⇒ �0(µ0) = Gm4
0(M)

32π
= Gµ4

0

2πe2
. (23)

The computed cosmological constant appears to depend on the Schwarzschild radius. This
dependence simply reflects the fact that the chosen background introduces one physical scale:
the Schwarzschild radius. Nothing prevents us from considering a more general situation
where the scalar curvature R is replaced by a generic function of R. Therefore, we will
consider the Sturm–Liouville problem of equation (7) in the context of a f (R) theory3.

3. One loop energy regularization and renormalization for a generic f (R) theory in a
Hamiltonian formulation

In this section, we report the main steps discussed in [9] for a f (R) theory in connection
with the Sturm–Liouville problem of equation (7). Although a f (R) theory does not need a
cosmological constant, rather it should explain it, we shall consider the following Lagrangian
density describing a generic f (R) theory of gravity

L = √−g(f (R) − 2�), with f ′′ �= 0, (24)

where f (R) is an arbitrary smooth function of the scalar curvature and primes denote
differentiation with respect to the scalar curvature. A cosmological term is added also in

2 Remark. Note that in any case, the maximum of � corresponds to the minimum of the energy density.
3 A recent review on the problem of f (R) theories can be found in [7]. A more general discussion on modified
gravities of the type f (R), f (G) and f (R, G) where G is the Gauss–Bonnet invariant, can be found in [8].
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this case for the sake of generality, because in any case, equation (24) represents the most
general Lagrangian to examine. Obviously f ′′ = 0 corresponds to GR. The generalized
Hamiltonian density for the f (R) theory assumes the form4

H = 1

2κ
[−√

gf ′(R)((3)R − 2�c − 3KijK
ij + K2) + V (P) + 2gij (

√
gf ′(R))|ij − 2pijKij ],

(25)

where

P = −6
√

gf ′(R) (26)

and

V (P) = √
g[Rf ′(R) − f (R)]. (27)

Henceforth, the superscript 3 indicating the spatial part of the metric will be omitted on the
metric itself. When f (R) = R,V (P) = 0 as it should be. Equation (25) becomes

H = f ′(R)

[
(2κ)Gijklπ

ijπkl −
√

g

2κ
((3)R − 2�c)

]

+
1

2κ

[√
gf ′(R)(2KijK

ij ) + V (P) + 2gij (
√

gf ′(R))|ij − 2pijKij

]
. (28)

Since

pij = √
gKij , (29)

then we obtain

H = f ′(R)

[
(2κ)Gijklπ

ijπkl −
√

g

2κ
((3)R − 2�c)

]

+
1

2κ
[2

√
gKijK

ij (f ′(R) − 1) + V (P) + 2gij (
√

gf ′(R))|ij ] (30)

and transforming into canonical momenta, one gets

H = f ′(R)

[
(2κ)Gijklπ

ijπkl −
√

g

2κ
((3)R − 2�c)

]

+ 2(2κ)

[
Gijklπ

ijπkl +
π2

4

]
(f ′(R) − 1) +

1

2κ
[V (P) + 2gij (

√
gf ′(R))|ij ].

(31)

By imposing the Hamiltonian constraint, we obtain

f ′(R)

[
(2κ)Gijklπ

ijπkl −
√

g

2κ

(3)R

]
+ 2(2κ)

[
Gijklπ

ijπkl +
π2

4

]
(f ′(R) − 1)

+
1

2κ
[V (P) + 2gij (

√
gf ′(R))|ij ] = −f ′(R)

√
g

�c

κ
. (32)

If we assume that f ′(R) �= 0 the previous expression becomes[
(2κ)Gijklπ

ijπkl −
√

g

2κ

(3)R

]
+ (2κ)

[
Gijklπ

ijπkl +
π2

4

]
2
(
f ′(R) − 1

)
f ′(R)

+
1

2κf ′(R)
[V (P) + 2gij (

√
gf ′(R))|ij ] = −√

g
�c

κ
. (33)

4 See [10] for technical details.
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Now, we integrate over the hypersurface � to obtain

∫
�

d3x

{[
(2κ)Gijklπ

ijπkl −
√

g

2κ

(3)R

]
+ (2κ)

[
Gijklπ

ijπkl +
π2

4

]
2(f ′(R) − 1)

f ′(R)

}
(34)

+
∫

�

d3x
1

2κf ′(R)
[V (P) + 2gij (

√
gf ′(R))|ij ] = −�c

κ

∫
�

d3x
√

g. (35)

The term

1

κ

∫
�

d3x
1

f ′(R)
gij (

√
gf ′(R))|ij (36)

appears to be a three-divergence and therefore will not contribute to the computation. The
remaining equation simplifies into∫

�

d3x

{[
(2κ)Gijklπ

ijπkl −
√

g

2κ

(3)R

]
+ (2κ)

[
Gijklπ

ijπkl +
π2

4

]
2(f ′(R) − 1)

f ′(R)

+
V (P)

2κf ′(R)

}
= −�c

κ

∫
�

d3x
√

g. (37)

By a canonical procedure of quantization, we want to obtain the vacuum state of a generic
f (R) theory. By repeating the same procedure for the generalized WDW equation (37), we
obtain

1

V

〈�| ∫
�

d3x
[
�̂

(2)
�

]|�〉
〈�|�〉 +

2κ

V

2(f ′(R) − 1)

f ′(R)

〈�| ∫
�

d3x[Gijklπ
ijπkl + π2/4]|�〉

〈�|�〉

+
1

V

〈�| ∫
�

d3xV (P)/(2κf ′(R))|�〉
〈�|�〉 = −�c

κ
. (38)

From equation (38), we can define a ‘modified’ �̂
(2)
� operator which includes f ′(R). Thus, we

obtain

〈�| ∫
�

d3x
[
�̂

(2)

�,f (R)

]
|�〉

〈�|�〉 +
κ

V

(f ′(R) − 1)

f ′(R)

〈�| ∫
�

d3x[π2]|�〉
〈�|�〉

+
1

V

〈�| ∫
�

d3x V (P)

2κf ′(R)
|�〉

〈�|�〉 = −�c

κ
, (39)

where

�̂
(2)

�,f (R) = (2κ)h(R)Gijklπ
ijπkl −

√
g

2κ

3Rlin, (40)

with

h(R) = 1 +
2[f ′(R) − 1]

f ′(R)
(41)

and where 3Rlin is the linearized scalar curvature whose expression is shown in square brackets
in equation (10). Note that when f (R) = R, consistently it is h(R) = 1. From equation (39),
we redefine �c

�′
c = �c +

1

2V

〈�| ∫
�

d3x V (P)

f ′(R)
|�〉

〈�|�〉 = �c +
1

2V

∫
�

d3x
√

g
Rf ′(R) − f (R)

f ′(R)
, (42)

6
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where we have explicitly used the definition of V (P). In the same spirit as the previous
section, we restrict the analysis to the contribution of physical degrees of freedom, namely TT
tensors5,6. Thus equation (22) becomes

�′
0(µ0, r)

8πG
= −m4

0(M)

128π2

[
ln

(
m2

0 (M)

4µ2
0

)
+

1

2

]
. (43)

Now, we compute the maximum of �′
0, by setting x = m2

0(M)/4µ2
0. Thus �′

0 becomes

�′
0(µ0, x) = −Gµ4

0

π
x2

[
ln(x) +

1

2

]
. (44)

As a function of x,�0(µ0, x) vanishes for x = 0 and x = exp
(− 1

2

)
and when x ∈[

0, exp
(− 1

2

)]
,�′

0(µ0, x) � 0. It has a maximum for x̄ = 1/e equivalent to m2
0(M) = 4µ2

0/e

and its value is

�′
0(µ0, x̄) = Gµ4

0

2πe2
(45)

or

1√
h(R)

[
�0(µ0, x̄) +

1

2V

∫
�

d3x
√

g
Rf ′(R) − f (R)

f ′(R)

]
= Gµ4

0

2πe2
. (46)

Isolating �0(µ0, x̄), we get

�0(µ0, x̄) =
√

h(R)
Gµ4

0

2πe2
− 1

2V

∫
�

d3x
√

g
Rf ′(R) − f (R)

f ′(R)
. (47)

Note that �0(µ0, x̄) can be set to zero when

√
h(R)

Gµ4
0

2πe2
= 1

2V

∫
�

d3x
√

g
Rf ′(R) − f (R)

f ′(R)
. (48)

Let us see what happens when f (R) = exp(−αR). This choice is simply suggested by the
regularity of the function at every scale. In this case, equation (48) becomes√

3α exp(−αR) + 2

α exp(−αR)

Gµ4
0

πe2
= 1

αV

∫
�

d3x
√

g(1 + αR). (49)

For Schwarzschild, it is R = 0, and by setting α = G, we have the relation

µ4
0 = πe2

G

√
1

(3G + 2)G
. (50)

Like the case of f (R) = R, the purpose of this calculation is related to equation (7), which
can be applied to different backgrounds, i.e. de Sitter, Schwarzschild–de Sitter, etc. The result
of this process will be a spectrum built in terms of vacuum fluctuations. Once the ‘ground
state’ of this spectrum will be identified, then there will be a chance to have an approach for
explaining the so-called dark energy. Note that in this approach, there is no evolution in time,
so some pathologies of the type ‘big rip’ do not come into play at this stage.

5 For a complete derivation of the effective action for a f (R) theory, see [11].
6 By a canonical decomposition of the gauge part ξa into a transverse part ξT

a with ∇aξT
a = 0 and a longitudinal

part ξ
‖
a with ξ

‖
a = ∇aψ , it is possible to show that most of the contribution comes from the longitudinal part (scalar).

Evidence against scalar perturbation contribution in a Schwarzschild background has been discussed in [12].
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